Dietary Mitigation of Psychosocial Stress Effects on Health in Female Primates

Carol A. Shively PhD
Dept. Pathology/Comparative Medicine
Wake Forest School of Medicine
Psychosocial Stress and Disease

↑ Inflammation
↑ Depression
↑ Cardiovascular Disease
↑ Infectious Diseases - HIV/AIDS
↑ At least some Cancers

• Challenge: Develop effective population level intervention on stress effects on disease

Cohen et al., 2007; 2012
Life Stress is Increasing; Women - More Stress

72%: Stress Plateaued/Increased Over Last 5 Years

By Sex \((p<0.01)\)

Stress Over the Past 5 Years

Cohen and Janicki-Deverts 2012

Stress in America, APA 2012
Cynomolgus Monkeys: An Established Model of Diet-Induced Atherosclerosis

- Dietary fat/cholesterol → atherosclerotic plaques in coronary arteries like humans

- Atherosclerosis and its complications cause heart disease

- Sex differences like humans: females protected
- Menstrual cycles like women
- This model accurately predicted in women:
 - females with good menstrual cyclicity protected
 - loss of ovarian function → ↑ coronary atherosclerosis
Western Diet Versus Regular Lab Chow

<table>
<thead>
<tr>
<th>Diet Composition</th>
<th>Western(^1)</th>
<th>Lab Chow(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Calories</td>
<td>% of Calories</td>
</tr>
<tr>
<td>Protein</td>
<td>15 (mostly animal sources)</td>
<td>18 (all plant sources)</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>Fat</td>
<td>34 (mostly animal sources)</td>
<td>13 (all plant sources)</td>
</tr>
<tr>
<td></td>
<td>% of Total Fats</td>
<td>% of Total Fats</td>
</tr>
<tr>
<td>Saturated</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Monounsaturated</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Polyunsaturated</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>ω6:ω3 Fatty Acids</td>
<td>15:1</td>
<td>12:1</td>
</tr>
<tr>
<td>Cholesterol (mg/Cal)</td>
<td>0.14/ 256 mg/day</td>
<td>trace</td>
</tr>
<tr>
<td>Fiber (% of diet)</td>
<td>8</td>
<td>4.5</td>
</tr>
<tr>
<td>Salt (g/100g diet)</td>
<td>0.6</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(^1\) *What We Eat*: Women 40-49, 2007-8

\(^3\) LabDiet Chemical Composition Diet 5037/8; significant source of soy isoflavones
Social Status Hierarchy

- In small social groups hierarchies are linear & stable over time
- In all studies monkeys consumed a Western-like diet

Shively and Kaplan, 1991
Subordinate Female Monkeys are Stressed

- Receive more aggression
- Groomed less
- More vigilant
- Spend more time alone
- Hypersecrete cortisol
- ↑Heart rate response to stress
- Poor ovarian function

Adams et al., 1985; Kaplan et al., 1986; Shively et al., 1997, 1998; Shively & Willard 2012
Social Subordination Stress Doubles Diet-Induced Coronary/Iliac Artery Atherosclerosis

Kaplan et al., 2002, 2012
In Women & Female Monkeys Stress Worsens CV & Other Health Outcomes

SOCIAL STRESS

↑ Depression
↑ Inflammation
↑ Ovarian dysfunction
↑ Visceral Fat Deposition

↑ Stroke & MI in Women
↑ Coronary & Carotid Artery Atherosclerosis in Female Monkeys

Most of these data from subjects consuming Western diets
Mediterranean Diet Associated With Improved CV Health In Observational Studies

Mediterranean Diet

↓ Depression (Sanchez-Villegas et al., 2013)
↓ Inflammation (Casas et al., 2014)
↓ Infertility (Vujkovic et al., 2010)
↓ Abdominal fat deposition? & metabolic syndrome
 (Funtikova et al, 2014; Daniele et al., 2013)
↓ Stroke & MI (Estruch et al., 2013, Fung et al., 2009)
Mediterranean Diet

↑ Depression
↑ Inflammation
↑ Ovarian dysfunction
↑ Visceral Fat Deposition
↑ Stroke & MI in Women
↑ Coronary & Carotid Artery Atherosclerosis in Female Monkeys

↓ Depression
↓ Inflammation
↓ Infertility
↓ Abdominal fat deposition?
↓ Metabolic syndrome
↓ Stroke & MI
Could a Western Diet Exaggerate Stress Responses Which in Turn Increase Disease?
Stress and Diet: What Do We Know?

- Rodent & Clinical Studies -
Cortisol Response to Stress Higher in Rats Consuming a High Fat Diet

- Short-term: 4 days high/low fat diet
- Diet: Unlike human (or rat); 40 vs 12% fat: corn + coconut oil
- The stressor mattered: no difference in response to extreme, only to mild stress

Stress: Extreme- 3 hrs tube; Mild – 2 hrs novel cage

Legendre and Harris, 2006
Stress May Exacerbate the Lipid Response to a High Fat Diet

• 8 weeks diet; stress last 21 days
• Variable extreme physical stressors
• Diet: Chow+ 10% lard, cholesterol, salt, sugar

Manting et al., 2011
Clinical Studies: Eating a High Fat Meal Exaggerates Cardiovascular Responses to Stress

- \(n=30 \)
- *crossover design*

Jakulj et al. 2007

<table>
<thead>
<tr>
<th></th>
<th>High-fat</th>
<th>Low-fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacDonalds</td>
<td>Cereal</td>
<td></td>
</tr>
<tr>
<td>Total/Sat fat, g</td>
<td>42/16</td>
<td>1.3/.8</td>
</tr>
<tr>
<td>Cholesterol, mg</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>Sodium, mg</td>
<td>2010</td>
<td>1904</td>
</tr>
<tr>
<td>Carbohydrate, g</td>
<td>73</td>
<td>172</td>
</tr>
<tr>
<td>Protein, g</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>
Type of Fat May Buffer CV Responses to Stress

- n=20, randomized crossover feeding study. Each diet - 6 weeks
- Diets: **Typical American Diet; Linoleic Acid** enriched diet (walnuts, walnut oil); **Alpha Linoleic Acid** enriched diet (walnuts, walnut & flaxseed oil)
- **LA and ALA diets**: Walnuts replaced dairy/meat as protein sources; 1/2 total fat from plant sources
- Diets matched for total protein, fat, carbohydrate, cholesterol

<table>
<thead>
<tr>
<th></th>
<th>% SFA</th>
<th>% PUFA</th>
<th>% LA</th>
<th>% ALA</th>
<th>LA/ALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAD</td>
<td>13</td>
<td>9</td>
<td>8</td>
<td>0.8</td>
<td>9.5</td>
</tr>
<tr>
<td>LA</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>3.6</td>
<td>3.5</td>
</tr>
<tr>
<td>ALA</td>
<td>8</td>
<td>16</td>
<td>10</td>
<td>6.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

West et al., 2010

- Also stroke volume, cardiac output
- Flow Med Dilation ALA only
Stress and Diet: What We Know

• Rodent & Clinical Studies:
 • High saturated fat diet may exacerbate physiological stress responses
 • It might be type rather than quantity of fat
 • Weaknesses: small, short term feeding studies, not what people eat

• Observational Studies -
Population Studies

Western Diet Pattern
Greater Perceived Stress

↑ Cortisol Levels

Mediterranean Diet
Lower Perceived Stress

Boston Puerto Rican Health Study
n>1300; 70% women, Laugero et al., 2011

Melbourne Collaborative Cohort Study
n=8600; Hodge et al., 2012
Stress and Diet: What We Know

• Rodent & Clinical Studies:
 • High saturated fat diet may exacerbates physiological stress responses
 • It might be the type rather than the quantity of fat
 • Weaknesses: small, short term feeding studies, not what people eat

• Observational Studies
 • Western diet pattern associated with greater perceived stress, cortisol; Mediterranean diet pattern associated with lower perceived stress
 • Strength: These diets are actually what people eat
 • Weaknesses: Self-reported diet & stress, retrospective, actual nutrient intake unknown

• Nonhuman Primates Studies-
Diet Effects on Physiological Stress Responses in NHPs: Western Diet Versus Regular Lab Chow

<table>
<thead>
<tr>
<th>Diet Composition</th>
<th>Western(^1)</th>
<th>Lab Chow(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Calories</td>
<td>% of Calories</td>
</tr>
<tr>
<td>Protein</td>
<td>15 (mostly animal sources)</td>
<td>18 (all plant sources)</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>Fat</td>
<td>34 (mostly animal sources)</td>
<td>13 (all plant sources)</td>
</tr>
<tr>
<td></td>
<td>% of Total Fats</td>
<td>% of Total Fats</td>
</tr>
<tr>
<td>Saturated</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>Monounsaturated</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>Polyunsaturated</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>(\omega_6:\omega_3) Fatty Acids</td>
<td>15:1</td>
<td>12:1</td>
</tr>
<tr>
<td>Cholesterol (mg/Cal)</td>
<td>0.14/ 256 mg/day</td>
<td>trace</td>
</tr>
<tr>
<td>Fiber (% of diet)</td>
<td>8</td>
<td>4.5</td>
</tr>
<tr>
<td>Salt (g/100g diet)</td>
<td>0.6</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\(^1\) *What We Eat*: Women 40-49, 2007-8

\(^3\) LabDiet Chemical Composition Diet 5037/8; significant source of soy isoflavones
Assessment of Autonomic Function Via Remote Telemetry

3-Lead Digital Transmitter

We get
- Interbeat Interval
- 24 hour digital ECG Tracing
- HR, HRV, Complexity
Diet Effects on Autonomic Function in Chronically Stressed Monkeys

- 42 female monkeys
- 6 mos monkey chow, followed by 34 mos Western Diet
- 24 hour Heart Rates Recorded by telemetry

Longitudinal Effects of Western Diet on 24 Hour Heart Rate in Female Monkeys
Assessment of Hypothalamic-Pituitary-Adrenal Activity

- **ACTH Challenge test**
 - Measures adrenal responsivity to ACTH
 - Suppress axis with large dose of dexamethasone
 - Give ACTH iv
 - Measure Cortisol response over 30 min
Diet Effects on Cortisol Response to ACTH in Female Macaques

Prudent Diet

- **Dom > Sub**
- **Dominant**
- **Subordinate**

Interpretation:
Blunted Stress R in chronically stressed subordinates

Western Diet

- **Sub > Dom**
- **Dominant**
- **Subordinate**

Interpretation:
Adrenal Hyperresponsiveness in Subs resulting in chronic hypercortisolemia

Emory-GA: Michopoulos et al., 2012
Rhesus M. mulatta
Interpretation:
Blunted Stress R in chronically stressed subordinates

Wake Forest – NC: Shively et al., 1998
Cynomolgus M. fascicularis
Interpretation:
Adrenal Hyperresponsiveness in Subs resulting in chronic hypercortisolemia
Stress and Diet: What We Know

• Rodent & Clinical Studies:
 • High saturated fat diet exacerbates physiological stress responses
 • It might be the type rather than the quantity of fat
 • Weaknesses: small, short term feeding studies, not what people eat

• Observational Studies
 • Western diet pattern associated with greater perceived stress, cortisol; Mediterranean diet pattern associated with lower perceived stress
 • Strength: These diets are actually what people eat
 • Weaknesses: Self-reported diet & stress, retrospective, actual nutrient intake unknown

• Nonhuman Primates Studies
 • Western diet appears to increase HR and cortisol secretion in chronically socially stressed subordinate monkeys
 • Weaknesses
 • Prudent diet comparison was with monkey chow – high in isoflavones which have tissue-selective estrogenic activity
 • No long term control diet group in HR study
 • Cortisol effects from post hoc comparison of 2 different studies
Stress and Diet: What We Don’t Have

• Randomized clinical trials of long-lasting effects of diet on stress physiology or stress-induced CVD

• Direct comparison of effects of Mediterranean versus Western diet pattern on stress physiology

• Mechanisms through which diet affects gene expression resulting in heightened stress responsivity
Central Hypothesis of our Current Preclinical NHP Trial

- Psychosocial stress-associated CV and other disease risk is due in part to Western diet exacerbation of stress reactivity
- Consumption of a Mediterranean diet will reduce physiological stress reactivity and mitigate the deleterious effects of stress on CV disease risk.

Overarching Hypothesis

![Graph showing endpoints worsened under stress and no stress conditions.](Image)
Diet Compositions

<table>
<thead>
<tr>
<th>Diet Composition</th>
<th>Western¹ % of Calories</th>
<th>Mediterranean² % of Calories</th>
<th>Lab Chow³ % of Calories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>54</td>
<td>51</td>
<td>69</td>
</tr>
<tr>
<td>Fat</td>
<td>31</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>% of Total Fats</td>
<td>% of Total Fats</td>
<td>% of Total Fats</td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td>39</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>Monounsaturated</td>
<td>36</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Polyunsaturated</td>
<td>24</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>ω6:ω3 Fatty Acids</td>
<td>15:1</td>
<td>3:1</td>
<td>12:1</td>
</tr>
<tr>
<td>Cholesterol (mg/Cal)</td>
<td>0.16⁴</td>
<td>0.15⁴</td>
<td>trace</td>
</tr>
<tr>
<td>Fiber (% of diet)</td>
<td>9</td>
<td>13</td>
<td>4.5</td>
</tr>
<tr>
<td>Salt (g/100g diet)</td>
<td>0.75</td>
<td>0.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>

1 *What We Eat*: Women 40-49, 2007-8
2 Bedard et al., 2012
3 LabDiet Chemical Composition Diet 5037/8
4 About 256 mg/day
Dietary Mitigation of Psychosocial Stress Effects on CV and CNS Health in Female Primates: Preclinical Trial Design

Western Diet
- 12 dominant 12 subordinate

Mediterranean Diet
- 12 dominant 12 subordinate

- **Endpoints:**
 - Stress Responsivity
 - CV Risk Factors
 - Coronary/Carotid Atherosclerosis
 - Brain
 - Results: Spring 2017

- **Run-in diet:**
 - Monkey Chow

- **Preclinical Trial:**
 - 48 females
 - Social Groups Randomized

- **Duration:** 2 Years

Grant: RO1 HL087103-07
The Obesity Epidemic & Stress-Related Eating

36% Report Unhealthy Eating To Cope With Stress:
Women (43%) > Men (29%)

Barrier to Change?

Maybe Willpower is not the only Problem....

- Managing stress: 64% importance, 37% achievement
- Eating healthy: 60% importance, 35% achievement
- Being physically active or fit: 57% importance, 33% achievement

31% OF AMERICANS SAY THAT A LACK OF willpower STANDS IN THE WAY OF CHANGE*

*BASE: Change has been recommended or decided to make a change (n=1928)
Diet, Stress, and Reward: Impact on Eating

- **High-fat** diet decreases dopaminergic activity in striatum “reward center”
- **Chronic Stress** decreases dopaminergic activity in striatum “reward center”
- Result: Need more high fat food to get the same reward
- Leading to consumption of even more **high-fat** foods

Could Western Diet + Stress have synergistic effects on the mesolimbic dopamine system?

Tellez et al., 2013 Science - rats

Grant, Shively et al., 1998 - macaques
Diet Modification of Stress Responses: Public Health Significance

• Currently there is no effective population level intervention on psychosocial stress effects on disease

• Population level diet modification possible
 – The National Cholesterol Education Program (NCEP)
 • Reduced cholesterol consumption in US
 – Recent FDA product labeling mandates
 • Reduced trans fat intake in US

• If hypothesis supported we will have a cost-effective population level intervention on stress

• This diet modification also will have many other beneficial effects on health

RO1 HL087103-07
Acknowledgements

- Tom Register, PhD
- Tom Clarkson, DVM
- Susan Appt, DVM
- Mike Adams, DVM
- Jay Kaplan, PhD
- Steve Manuck, PhD
- Kathy Grant, PhD
- Mike Nader, PhD
- Richard Ehrenkaufer, PhD
- Tom Morton, PhD
- Bob Mach, PhD
- Jim Daunais, PhD
- Bob Kraft, PhD
- Don Gage, PhD
- Beth Uberseder
- Edison Floyd
- Marnie Silverstein
- Terrell Jones
- David Neely
- Steve Day
- Stephanie Willard
- Tasha Lanier
- Jami Johnson
- Mike Smith
- Lindsey Dunn
- Stephen Loiacono
- Nancy Buchheimer

Funding: NHLBI, NIMH, John D. & Catherine T. MacArthur Foundation